DUDLEY's HANDBOOK OF PRACTICAL GEAR DESIGN and MANUFACTURE

Download Free PDF View PDF

Download Free PDF View PDF

Gears This chapter provides fundamental theoretical and practical information about gearing. It also introduces various gear-related standards as an aid for the designer who is going to use gears for his planning.

Download Free PDF View PDF

International Journal of Engineering Sciences & Research Technology

Gears are one of the most critical components in mechanical power transmission systems. The bending and surface strength of the gear tooth are considered to be one of the main contributors for the failure of the gear in a gear set. Thus, analysis of stresses has become popular as an area of research on gears to minimize or to reduce the failures and for optimal design of gears. This paper investigates finite element model for monitoring the stresses induced of tooth flank, tooth fillet during meshing of gears. The involute profile of helical gear has been modeled and the simulation is carried out for the bending and contact stresses and the same have been estimated. To estimate bending and contact stresses, 3D models are generated by modeling software CATIA V5 and simulation is done by finite element software package ANSYS 14.0. Analytical method of calculating gear bending stresses uses Lewis and AGMA bending equation. For contact stresses Hertz and AGMA contact equation are used. Study is conducted by varying the face width to find its effect on the bending stress of helical gear. It is therefore observed that the maximum bending stress decreases with increasing face width. The stresses found from ANSYS results are compared with those from theoretical and AGMA values

Download Free PDF View PDF